

AI-Powered Document Intelligence for Insurance & Compliance

Reducing Document Review Time from Minutes to Seconds

1. Executive Summary

Insurance, cybersecurity, and compliance teams rely heavily on long, dense PDFs - coverage forms, SOC 2 reports, NIST frameworks, cyber endorsements, and audit evidence. These documents are difficult to search, inconsistent across carriers, and slow down decision-making.

To address this, BIS Advisors developed and deployed an **AI-powered document intelligence system** capable of reading complex policy and compliance documents and returning **grounded, citation-backed answers in a few seconds**.

Across evaluations on both internal materials and real insurance/compliance PDFs, the system consistently delivered:

- **80–90% reduction in lookup time**
- **Accuracy in the low-to-mid 90% range**
- **Zero unsupported claims** when strict grounding is enforced
- **Consistent answers between reviewers**
- **Hybrid deployment across on-prem RTX 4090 and GCP L4**
- **Predictable, low compute cost per question**

While AI does not replace actuarial, legal, or underwriting judgment, it dramatically reduces the manual work required to find information inside complex documents.

2. Industry Challenge

Insurance and compliance workflows depend on documents such as:

- 30–200+ page cyber, property, liability, and ESG policies
- SOC 2 Type I/II reports
- NIST 800-53 and 800-171 frameworks
- Cyber endorsements, exclusions, conditions
- Regulatory guidance
- Audit evidence and supporting documentation

These documents often contain:

- Dense technical language
- Repetitive cross-references
- Inconsistent formatting across carriers
- OCR-heavy or scanned pages
- Definitions located far from the clauses they influence

A single coverage or control question may require **20–40 minutes** of manual searching across multiple PDFs.

This leads to:

- Slower underwriting turnaround
- Inconsistent interpretation
- Higher compliance and audit risk
- Analyst fatigue and cognitive load

As one analyst put it:

“I spend a third of my day just trying to find where things are in these PDFs.”

3. Solution Overview

BIS Advisors implemented a domain-optimized **Retrieval-Augmented Generation (RAG)** system designed specifically for insurance and compliance work.

System Capabilities

- Parses and indexes large, complex PDFs
- Retrieves the most relevant clauses, sections, and controls
- Generates answers grounded strictly in retrieved text
- Returns responses in **2–7 seconds**
- Provides citations to exact policy sections or SOC/NIST controls
- Handles multi-document libraries and cross-document questions
- Responds with **“Not present in the document.”** when appropriate

Technical Architecture

Component	Implementation
Language	Python
LLM	Llama 3.1 Instruct 8B (self-hosted)
Inference Engine	vLLM
Embeddings	Llama 3.1 Embeddings

Component	Implementation
Vector DB	FAISS
Deployment	GCP L4 + on-prem RTX 4090
Guardrails	Grounded-answer prompting + refusal when unsupported
Pipeline	Chunk → Embed → Retrieve → Rank → Answer

Engineering Observations (Generalized)

- A clean Linux environment provides the most stable on-prem inference experience.
- vLLM performs best when GPU memory utilization remains within approximately 80–85%.
- Retrieval accuracy depends heavily on PDF parsing quality (OCR, tables, headers).
- Optimal chunking and overlap vary by document type (policies vs SOC/NIST vs endorsements).

These real-world nuances are where production-ready RAG systems differentiate themselves.

4. Evaluation Methodology

To ensure defensible results, we implemented a structured evaluation strategy:

- ~120 total questions
- Roughly half insurance, half SOC/NIST
- Scored using **Correct / Partially Correct / Incorrect**
- All answers manually reviewed by a domain-knowledgeable evaluator
- Grounding checked against retrieved text
- Latency measured across repeated runs on **GCP L4** and **on-prem RTX 4090**

This produced realistic, operationally meaningful metrics - not lab-optimized benchmarks.

5. Performance Results

Latency (L4 and 4090)

Across all question types:

- **Average latency on L4:** 5–7 seconds
- **Range:** ~0.5 to 15 seconds depending on context depth and answer length
- **On-prem 4090:** ~3.5× faster than L4

Latency was influenced more by retrieval depth and answer length than by document type.

6. Deployment Considerations

GPU VRAM & Model Stability

Optimal settings for stable inference:

- Keep GPU utilization in the **80–85% range**
- Very long answers (>2–3k tokens) increase latency noticeably
- Clean Linux installations ensure consistent GPU behavior

On-Prem vs Cloud Options

On-Prem RTX 4090

- Fast, predictable performance
- Minimal incremental cost
- Full data control
- Ideal for daily workloads

GCP L4

- Easy to deploy and scale
- Handles 24GB models well
- Suitable for variable or distributed workloads
- Estimated business-hours cost: **\$400–\$500/month**

Hybrid Deployment

Most teams benefit from a hybrid setup:

- On-prem for routine use
- Cloud for burst traffic or after-hours support

7. Cost Analysis

Self-Hosted Compute Cost

Example (scheduled GCP L4 instance):

- ~\$400/month for 8–10 hrs/day availability
- At ~40k–50k monthly questions:
\$0.00001–\$0.00002 per question

On-prem 4090 amortizes to near-zero incremental cost.

(Implementation and integration work not included.)

API Model Comparisons

Model	Approx Cost per Question
GPT-4o mini	~\$0.0002
Claude 3.7 Sonnet	~\$0.005
GPT-4.1	~\$0.007

Recommended:

Use local Llama 8B for 80–90% of requests, escalate to premium API models for complex or ambiguous tasks.

8. Business Impact

Before AI

- 20–40 minutes to answer many coverage or compliance questions
- Manual paging through multiple PDFs
- Re-reading exclusions, definitions, and endorsements
- High variance between reviewers

After AI

- **Seconds** to retrieve grounded, citation-backed answers
- Consistent interpretation across analysts
- Lower cognitive load
- **80–90% reduction** in lookup time

Value Across Teams

Underwriting

- Faster review of submissions
- Faster identification of conditions, deductibles, sublimits
- More consistent interpretation of ambiguous clauses

Claims

- Faster adjudication
- Improved consistency
- Stronger defensibility with citations

Compliance & Audit

- Rapid SOC 2 evidence lookup
- Reliable NIST control interpretation

- Better audit readiness and documentation

Known Limitations

- OCR-heavy PDFs reduce recall and require specialized handling
- Highly cross-referenced documents occasionally need manual confirmation
- Not intended to replace legal or actuarial review
- Requires tuning per document type

9. Change Management & Adoption

The technology performs well, but organizational adoption requires:

- Clear communication of what the system can and cannot answer
- Training on reading grounded answers
- Governance and usage policies
- Managerial support to encourage adoption
- Trust-building over the first weeks of use

In every deployment, **culture, not model performance, determines long-term success.**

10. Key Lessons Learned

Technical

- Domain-optimized chunking and embeddings matter more than model size
- Instruct models outperform base models for grounded QA
- Retrieval accuracy is heavily influenced by PDF parsing quality
- vLLM requires careful VRAM tuning
- WSL is not suitable for production GPU workloads

Operational

- Integrations drive the real business value
- Insurance and compliance content require domain-specific evaluation sets

Organizational

- Analysts must understand grounded answers
- Adoption requires deliberate change management
- Consistency improves dramatically with structured workflows

11. Conclusion

AI-powered document intelligence is no longer experimental.

It is already delivering measurable value across underwriting, claims, cyber, audit, and compliance.

With:

- **2–7 second grounded answers**
- **80–90% reduction in lookup time**
- **Accuracy in the low-to-mid 90% range**
- **Stable on-prem and cloud deployments**
- **Proven Python-based RAG architecture**

Organizations can reduce manual effort, improve decision-making speed, and increase operational consistency.

The combination of grounded retrieval, hybrid deployment, and domain-optimized tuning makes AI document intelligence a practical, repeatable tool for real insurance and compliance workflows.

About BIS Advisors

BIS Advisors helps insurance, finance, and other regulated industries deploy **practical, reliable AI systems** - with a strong focus on document intelligence, hybrid cloud/on-prem deployment, and cost-efficient self-hosted LLMs.

We build AI solutions that teams trust, adopt, and use every day.

<https://bisadvisors.com>
contact@bisadvisors.com